Mostrando entradas con la etiqueta Facultad de Ciencias Naturales. Mostrar todas las entradas
Mostrando entradas con la etiqueta Facultad de Ciencias Naturales. Mostrar todas las entradas

El material de dibujo


Bigotera loca

Evidentemente no es la misma calidad un material de dibujo comprado en una casa especializada que instrumentos escolares, que no obstante, es un primer paso para iniciarse en el dibujo. Hay que tener en cuenta además que para iniciarse en el dibujo científico de Naturaleza es posible hacerlo como aficionado con materiales baratos, para ir aumentando la inversión a medida que vaya aumentando el trabajo, la destreza y la profesionalidad.

La diferencia entre el dibujo científico de Naturaleza y el dibujo geométrico, lineal o industrial, es que este último debe ser completamente geométrico, esquemático y preciso, mientras el de Naturaleza debe ser ilustrativo, pedagógico, y si es posible, artístico.

Ello no quita que no puedan tener muchas cosas en común. Por ejemplo, dibujos de plantas o animales pueden acompañarse de gráficas, mapas o cortes geológicos, y planos de construcciones o maquinaria pueden acompañarse de dibujos de como serían tras ser construídos.


1. Soportes de papel

En cuanto a soportes de papel tenemos principalmente cinco: el papel o cartulina, el papel de calcar, el papel vegetal o cebolla, el papel o cartulina con relieve, y el papel milimetrado.

El papel se vende en rollos o en hojas. Estas se suelen agrupar en resmas de 500 hojas. Una mano son 25 hojas. Por tanto un paquete de 500 hojas, una resma, tiene 20 manos.

Hoy día el formato más usado es el de la norma internacional ISO-DIN, en los formatos A3 (297 x 420 mm) y A4 (210 x 297 mm), siendo este último el formato usado como hoja de papel estándar o folio.

La fuerza del papel corresponde a su espesor y se mide en gramos por metro cuadrado (g/cm2), de aquí el nombre de gramaje. En cuanto a películas plásticas, el espesor de expresa directamente en micras.

El folio normal que usa para impresoras o para tomar apuntes es muy versátil y rinde muy buenos servicios, pero tiene poco cuerpo. De elegirlo, preferiblemente el de mayor gramaje.

El papel de calcar o de calco puede servir para componer figuras o hacer mapas y el más fino para croquis. Cuanto más fuerte mejor, siempre que no pierda la adecuada transparencia. La lámina de acetato suele ser lo más usado.

En dibujo industrial se han usado hace unos cuantos años el papel vegetal o papel cebolla, cuando se usaba para hacer copias, hoy ya en desuso por los programas CAD y las impresoras plotter. En ilustración de Naturaleza puede ser adecuado para mapas. No se le debe doblar porque los dobleces se marcan permanentemente.

La cartulina estucada es el soporte más agradable para el dibujo científico. Es un cartón recubierto por una capa de estuco. El dibujo hecho sobre este material se puede retocar raspando el estuco con una cuchilla. También es muy interesante la cartulina estucada negra, sobre la que se pueden dibujar fácilmente figuras blancas sobre fondo negro con una cuchilla.

En el papel o cartulina estampado al tener un relieve destinado a fragmentar el trazo en punteados con el lápiz, se pueden dibujar diferencias de tono, grisados que son muy laboriosos si se realizan a base de puntos. La superficie puede ser no raspable, de papel fuerte con superficie vermiculada, en la que la tinta se reparte por depresiones y relieves. Si es raspable, cartulina estucada en relieve, se puede trabajar con raspador.

El papel milimetrado es un papel que puede ser opaco o transparente, rayado horizontal y verticalmente con líneas espaciadas a escala milimétrica, con distancias entre líneas normalmente de 1 mm. En dibujo geométrico se emplea para bocetos, croquis, gráficas y diagramas. En ilustración científica se puede emplear para mostrar gráficas (como puede ser el aumento de la población de un ave, con un dibujo de la misma de fondo).



2. Lápices y portaminas

Los lapices de calidad tienen una dureza normalizada, que se indica normalmente con las HB y F. Los lápices duros llevan la letra H y los blandos la B, y además llevan un número proporcional a esta magnitud, así los 4B son muy blando y los 4H muy duros.

Conviene disponer de un juego de tres tipos:

- Para dibujar un lápiz de dureza media, HB o F.

- Uno blando o graso, al menos 2B. Ensucia y es frágil, pero puede servir para tiznar el reverso de dibujos para calcarlos.

- Para repasar los dibujos, sobre todo cuando se realiza una transferencia por calco, un lápiz relativamente duro 2H.

La sección de los lápices puede ser redonda o hexagonal, siendo esta preferible ya que no ruedan cuando se dejan sobre una mesa de dibujo inclinada.

El lápiz se debe poder afilar sin romperse. Para afilarlos, se puede usar un raspador para afilar minas, que es una simple pletina de cartón con un trozo de lija fina, sobre la que se gira la punta del lápiz. Esta operación se debe hacer fuera del papel de dibujo para que no caiga sobre el polvo del lápiz y lo ensucie. Otra opción usada es el afilador. Se debe hacer girar en él el lápiz de forma suave.

Los lapices de colores deben dar su color sin esfuerzo y con trazos suaves, y la mina no debe desmoronarse o quebrarse.

Todo esto es aplicable a los portaminas. Su mecanismo debe ser de buena calidad, que sujete firmemente la mina, esta no se debe desplazar si se da un trazo enérgico.

Las minas se venden en estuches para protegerlas de los golpes, ya que son frágiles.

Los portaminas tienen una ventaja sobre los lápices. Existen minas muy delgadas que no necesitan afilarse, siendo muy prácticas, además de para dibujo industrial, para gráficos, mapas, cartas geológicas, etc.



3. Gomas y borradores

Existen dos grandes grupos de gomas, las clásicas a base de caucho y las gomas plásticas o borradores plásticos.

Las gomas clásicas son las que dan mejor resultado para los lápices de grafito sobre papel común, celulósico. Son desaconsejables las de colores, ya que si no son de buena calidad dejan marca, y las rígidas, ya que extiende el grafito sin absorberlo.

Las gomas plásticas o borradores plásticos absorben muy bien el lápiz en los soportes plásticos, ya que las clásicas a menudo lo extienden. También dan buenos resultados en otros tipos de soporte.

A menudo las gomas vienen en un estuche protector, que conviene conservar, ya que de esta manera evitamos que la goma se ensucie, lo que hará que la conservemos más tiempo.

También existen los lápices goma, en los que la mina es de goma en vez de grafito. Son útiles para borrar puntualmente y con precisión.

Hay gomas especializadas en borrar lápiz de colores, en tinta china, etc. Su calidad y eficiencia depende de la marca.

Si la goma está sucia, conviene, antes de borrar, frotarla sobre un papel antes de usarla. 



4. Plumas y portaplumas

En la actualidad existen varias posibilidades, que van desde las plumas clásicas a los instrumentos más modernos.

El palillero de dibujo clásico, es lo más simple y lo más barato. Aunque ha sido desplazado en los últimos tiempos, sigue siendo muy empleado. Es un palillero de plástico o madera en cuyo mango se inserta la pluma.

Las plumas pueden ser clásicas con punto flexible, con punto de longitud y anchura variables, conviene disponer de una serie completa; plumas ordinarias, gracias a su firmeza pueden sustituir a un tiralíneas siempre que no se presionen inadecuadamente; de apertura fija, los tiralíneas, usados hace unos años en dibujo industrial, las plumillas de disco, que existen en varios espesores; y las plumas pincel, que poseen una laminilla metálica que hace de depósito de tinta.

Los tiralíneas pueden ser finos, para líneas finas, o de grueso, también llamada sueco o de lengua de vaca, que conviene que una de sus patas sea giratoria sobre la otra, para facilitar su limpieza. No conviene cargarlos de tinta en exceso, ya que puede caer alguna gota sobre el dibujo.

Los estilógrafos son plumas tubulares que tienen un depósito de tinta. Se les conoce popularmente como "rotrings", ya que Rotring es una de las marcas pioneras y más usadas. Tienen como ventaja su fácil uso, su trazado constante y su limpieza, y y como inconvenientes la necesidad de mantenimiento, ya que necesitan limpieza periódica para no obturarse, y la fragilidad y fácil rotura cuando las puntas son muy finas.

Por último, hay que hacer mención a los rotuladores de punta muy fina, cuya tecnología ha mejorado notablemente en los últimos años. No son comparables en calidad a las plumas, pero a veces pueden servir como sustituto.

En cuanto a la tinta, hay que hablar de dos propiedades: la opacidad y la fluidez. Cuanta más opaca mejor, y en cuanto a la fluidez, esta debe ser la adecuada para el propósito que la usamos.



5. Pinceles

La calidad de un pincel está directamente relacionada con la calidad del pelo, siendo buenos los de marta y ardilla. Conviene disponer al menos un pincel grande y otro pequeño.

También están las brochas de cerda, redondas, abombadas y planas, con distintas longitudes de pelo.

Un pincel, aunque no lo parezca es un instrumento muy frágil. Cuando se limpie en el agua, no hay que dejar que se aplaste la punta, ni dejarlo tiempo excesivo. No hay que intentar sacar un grumo de pintura aplastando los pelos. Para limpiarlo hay que enjuagarlo con abundante agua limpia y luego dejarlo secar de forma plana. No hay que dejar que una pintura se seque en la brocha. Si se va a dejar de usar durante un tiempo un pincel de buena calidad, hay que untar los pelos con vaselina, y a la hora de usarlo hay que eliminar la vaselina con agua y jabón.



6. Reglas y plantillas

Las reglas graduadas se emplean para medir longitudes. Conviene que sean de plástico y de buena calidad.

La escuadra es un triángulo rectángulo isósceles y el cartabón tiene la forma de un triángulo rectángulo con ángulo agudos de 30º y 60º. Para que sean un juego el cateto menor debe ser igual a la hipotenusa. Se deben usar de plástico transparente. Se usan para trazar líneas.

El transportador de ángulos puede ser un círculo o un semicírculo donde van grabados los ángulos.

Las plantillas de curvas se emplean para trazar curvas que no se puede o no se hace bien con el compás. Conviene que sean flexibles, de plástico y que tengan un buen número de curvas. El uso correcto es dibujar primero a lápiz y luego a tinta. Conviene tener dos, una con curvas grandes y otra con curvas pequeñas.

Existen también reglas flexibles deformables, pero no suelen dar muy resultado, ya que a la larga se terminan estropeando y no sirven para curvas pequeñas.

También existen plantillas especiales, que son de plástico, en las que se ha perforado unas formas de frecuente uso, las hay de elipses, letras, círculos, cuadrados, y especializadas, con símbolos sanitarios, eléctrónicos, etc.



7. Compases

El compás grande con alargadera consta de dos patas articuladas. En un hay una punta de acero y en la otra el elemento trazador, de lápiz o de tinta. Hay que colocar la punta en el punto exacto y trazar el círculo desde la parte superior o mango. El trazar de tinta o lápiz siempre vertical y el compás bien ajustado, sin articulaciones flojas.

El compás de puntas se emplea para transportar medidas. El mecanismo de articulación de las patas no debe estar excesivamente prieto.

La bigotera, usada para trazar circunferencias pequeñas, puede ser de dos tipos: normal, en la que la separación de las patas es por una rueda moleteada, o loca o de émbolo, en la que hay un eje con una punta y la otra pata es separada por un tornillo.



8. Mesa o tablero de dibujo

El más simple puede ser un cartón grueso de 500 x 300 mm. Si se puede disponer de un tablero, mejor que sea de madera contrachapada.

Las casas especializadas ofrecen varios modelos en el mercado. El papel se puede sujetar a la mesa con cinta adhesiva.

Hay mesas de dibujo que tienen reglas con brazos de T o largas para trazar paralelas. Cada vez son menos usadas.

La iluminación debe ser suficiente y venir de arriba y a la izquierda.



9. Otros instrumentos

Pueden mencionarse la piedra de afilar, para mantener en buen estado los tiralíneas y compases, se suele cubrir con una capa de aceite para hacer más suave la operación; la cuchilla, que puede ser una simple cuchilla de afeitar, para retocar dibujos; o el trapo de limpieza, para limpiar los instrumentos.

Hay quien prefiere usar raspadores en vez de cuchilla. Un raspador consiste en un mango al que se le inserta una hoja puntiaguda o de bisturí. Permite un trabajo más fino que el que se podría hacer con una simple cuchilla.


Ilustración científica de Historia Natural

Leer más

Ilustración científica de Historia Natural


Actiniae, 1907, por el naturalista Ernst Haeckel
Actiniae, 1907, por el naturalista Ernst Haeckel

La ilustración científica de Historia Natural es una actividad fascinante. Es una mezcla de Ciencia, Arte, y sobre todo fascinación por la Naturaleza, por el mundo que nos rodea.

Los dibujos de Cuvier, Buffon, Haeckel, por citar unos pocos, y en España, los cuadernos de campo de Felix Rodríguez de la Fuente, incitaron curiosidad, cautivaron, y motivaron a muchas generaciones de científicos, naturalistas, aficionados, o simples lectores, además de servir de enorme ayuda a las Ciencias Naturales.

Hoy, la ilustración científica de la Naturaleza, en la era digital, sigue siendo una actividad necesaria, una afición apasionante, un posible medio de vida, y un excelente elemento de divulgación y desarrollo científico. Los ordenadores y la animación digital, lejos de anularla o no hacerla necesaria, por el contrario, la han enriquecido.

Sin la ilustración naturalista, no hubiéramos podido conocer muchos aspectos de la Naturaleza desde el siglo XVIII, como jardines botánicos, variedades de plantas, los extinguidos dodo o la paloma migratoria, ni tampoco recrear mundos del pasado de la Tierra.

Iniciarse en esta gratificante actividad es sencillo, sólo hacen falta ganas e interés. Con papel de dibujo, lapices de distinta dureza, lapices de colores o acuarelas basta para una primera toma de contacto.  


1. Historia y concepto

La ilustración científica, usada principalmente en Historia Natural, existe prácticamente desde los inicios de la Humanidad, cuando el ser humano se esforzaba por entender el mundo que le rodeaba; plantas, animales, paisajes.

Al principio fueron los pintores del arte rupestre, luego los dibujantes renacentistas (Leonardo da Vinci, Alberto Durero), luego los ilustradores de la era científica (George Stubbs, Sydney C. Parkinson, Ferdinand Bauer, Maria Sibylla Merian, Ellis Rowan, etc.) hasta llegar a los tiempos actuales (Margaret Mee, Nicolás Fernández, Diego Ortega, etc.).

El propósito de la ilustración científica de la Naturaleza es ayudar a la investigación, a la docencia y a la divulgación científica de la Historia Natural, de las Ciencias de la Naturaleza.

El inicio de esta disciplina como tal surge en el siglo XVIII, en la Revolución Científica, con las grandes exploraciones. La investigación de los continentes americano y africano se descubran tantas plantas nuevas, que es necesario poner orden en este caos. El sistema de clasificación de Linneo ayudó a hacerlo.

Georg Ehret fue un botánico y entomólogo alemán que trabajó con Linneo. Dibujo las plantas con todos sus colores y formas, ayudando a su clasificación al mostrar con detalles sus partes reproductivas. Se le conoce como estilo Linneo.

Frente a la anterior corriente descriptiva, se dio otra corriente que dibujaba la Naturaleza, tal como era, como un todo. Esta corriente está ejemplificada en el naturalista y botánico norteamericano William Bartram. Se le conoce como estilo ecológico.

Estas dos corrientes o tendencias continúan en el actualidad. Siguen siendo tan necesarias, una como la otra, y ambas siguen contribuyendo al Arte y a la Ciencia.

La diferencia entre ilustración científica de Historia Natural e ilustración naturalista es que la ilustración científica de Historia Natural plasma conceptos científicos con rigor y claridad, necesitando investigación y documentación, y cuyo fin es la comunicación y divulgación científica, mientras que la ilustración naturalista se toma ciertas licencias en cuanto a colores formas, formas, etc, y su fin es mostrar la belleza del mundo natural. En todo caso, el limite es muy sutil.

Los objetivos pueden ser cualesquiera que aparezcan en la Naturaleza, como seres vivos, el Universo, minerales, fósiles, objetos arqueológicos, objetos antropológicos, etc.



2. Visión actual

Se puede pensar que ya no existe necesidad de aprender y practicar ilustración científica de Historia Natural en un mundo donde se ha impuesto la fotografía digital y la animación por ordenador, pero lo cierto es que los ilustradores científicos de Historia Natural son muy demandados ya que es necesario resaltar aspectos que la fotografía no hace, reconstruir mundos del pasado, realizar dibujos para publicaciones, interpretar datos científicos de manera visual, o simplemente, pensar de forma visual uniendo arte y ciencia.

La observación detallada del objeto que dibujan ha permitido a los ilustradores científicos observar detalles que habían pasado desapercibidos a los científicos, médicos y arqueólogos, como detalles de animales y plantas, aspectos del desarrollo fetal, y características de artefactos realizados por los primeros humanos.

Las diferencias que existen entre la ilustración de Historia Natural y la ilustración artística son las siguientes:

- La ilustración de Historia Natural requiere trabajos previos, como observaciones (a veces trabajo de campo), investigación y y trabajo de preparación.

- En la ilustración científica se dibuja el objeto con la mayor precisión posible, sin inventar nada, aunque sí es posible resaltar algún detalle que interese hacerlo.

- En la ilustración científica las ilustraciones deben ser visualmente atractivas, pero sin ninguna concesión a la libertad creativa.

En definitiva, la ilustración científica de Historia Natural se basa en la observación y en la técnica, mientras el dibujo artístico puede dar rienda suelta a la imaginación y la creatividad.

Hasta tal punto es así, que varias universidades y centros de investigación imparten cursos o asignaturas de ilustración científica de Historia Natural, entre ellos el prestigioso curso de la universidad australiana de Newcastle Drawing Nature, Science and Culture: Natural History Illustration, que se puede seguir online de manera gratuita, sólo hay que pagar si se quiere un certificado.

Ejemplos actuales de ilustradores científicos de Historia Natural demuestran que la ilustración científica de la Naturaleza, aunque tenga cierto aire romántico, no es algo del pasado, sino algo del presente y con futuro.

El artista y ornitólogo William T. Cooper (1934-2015), también nacido y educado en Newcastle, NSW, se menciona en el siguiente vídeo de David Attenborough como "uno de los más grandes que haya trabajado en esta disciplina tan exigente". Cooper, cuyo trabajo no solo es hermoso y está lleno de carácter, sino que también es científicamente correcto, explica aquí lo importante que es para los ilustradores de historia natural estudiar las aves vivas en busca de formas, modales y hábitats, y las muestras de taxidermia para los detalles más finos, incluso hasta el número de plumas. Las observaciones diligentes de Cooper significan que su trabajo tiene un lugar legítimo en el arte y la ciencia y que siempre resistirá la prueba del tiempo.


Algunos enlaces interesantes:

- Colección de las hermanas Scott en el Museo Australiano

- Diego Ortega Alonso, profesional de la ilustración científica de Historia Natural

- Institución Smithsoniana: modelos en 3d y laboratorio de aprendizaje.

- Los naturalistas y el estudio de la Naturaleza

- Obras de William T. Cooper

- Pinturas sobre pueblos aborígenes australianos de Joseph Lycett


3. Técnicas de la ilustración científica de Historia Natural

La primera técnica que se debe dominar es el dibujo, aprender a dibujar bien y con precisión, saber componer una ilustración y realizar el diseño final de forma tridimensional y realista. Su protagonista principal es el lápiz.

La segunda es la aplicación de color, saber como dar realismo y profundidad a los dibujos. Sus protagonistas son los pinceles y lápices de colores.

La tercera es la mejora de la ilustración, ya sea mediante retoque fotográfico digital, para exponer en público, murales, etc.

La ilustración científica puede llevar tiempo adoptándose posiciones estáticas y movimientos repetitivos. Debemos tener un espacio para configurar nuestro equipo de ilustración científica, sintiéndonos cómodos en el mismo. La mesa y la silla deben ser cómodas, la espalda debe estar recta y los ojos deben hacer descansos periódicos. 



4. Material necesario

Un material básico para empezar puede ser el siguiente:

- Un bloc de dibujo de tamaña A3 (el doble de un folio) con papel de buena calidad.

- Superficie dura para apoyar el papel (Escritorio, mesa o tablero de dibujo)

- Lápices de distinta dureza, de 4B hasta 2H.

- Gomas de borrar

- Pluma o cepillo suave para limpiar los restos de goma

- Lapices de colores, o una caja de pinturas de acuarela (en este caso necesitaremos un pincel pequeño.

- Una buena iluminación. Después de la iluminación natural, puede valer una lámpara de escritorio que ilumine bien y de manera homogénea.



Ilustración científica de Historia Natural
Leer más

Introducción a la Geología, Mineralogía y Petrología. Examen


1. Este examen consta de 60 preguntas con 4 respuestas alternativas en las que una y sólo una es verdadera. Se supera el examen con un 80 % de respuestas acertadas.

2. El examen tiene un límite de tiempo de 60 minutos. Se inicia la cuenta atrás al cargar la página y llegado el tiempo final, se corrige automáticamente. Para iniciar el examen e iniciar la cuenta atrás, pulsa el botón Empezar el examen y para finalizarlo Finalizar el examen.

3. Puedes repetir el examen las veces que lo desees.

4. Si superas el examen, se abrirá un mensaje en el que se pedirá tu nombre y apellidos tal y como deseas que aparezca en el diploma. Después del último carácter no añadas espacios. Para que el proceso no se frustre, debes usar el navegador adecuado, con la configuración adecuada, como se muestra en este enlace.

5. Al aceptar las condiciones y empezar el examen, estás declarado bajo tu responsabilidad y honor que no vas a hacer trampas o fraudes en el examen.




1. ¿Cuál de lo siguiente NO estudia la Geología?

Los cristales
La historia de la Vida en la Tierra
Los terremotos
Todo lo anterior es estudiado por la Geología


2. La Tierra tiene aproximadamente:

100 millones de años
1.500 millones de años
3.000 millones de años
4.500 millones de años


3. ¿Cuál de las siguientes frases NO es cierta?

La Tierra posee un campo magnético en forma de dipolo
El eje de la Tierra está inclinado
La teoría más acepatada sobre la Luna es que se formó por un impacto de un primitivo planeta contra la Tierra
Todas las respuestas anteriores son correctas


4. La discontinuidad existente entre la corteza y el manto de la Tierra se denomina:

Mohorovicic
Gutenberg
Wiechert-Lehmann
Ninguna de las respuestas anteriores es correcta


5. El núcleo de la Tierra está compuesto principalmente de:

Níquel
Hierro
Silicio
Aluminio


6. La capa más grande de la Tierra es:

Corteza
Manto
Núcleo
Ninguna de las respuestas anteriores es correcta


7. La teoría de la deriva continental fue propuesta por:

Rudof Steiner
Alfred Wegener
Nicolás Steno
Charles Cuvier


8. La deriva continental se produce por la convección de:

Corteza
Manto
Núcleo
Ninguna de las respuestas anteriores es correcta


9. La formación de las cadenas montañosas se denomina:

Orogénesis
Colisión
Subducción
Convección


10. Cuando una placa se desliza junto a otra, se denominan:

Transformantes
Convergentes
Divergentes
Deslizantes


11. ¿En qué período se empieza a fragmentar el supercontinente Pangea?

Pérmico
Triásico
Jurásico
Cretácico


12. Las zonas donde se forma nueva corteza oceánica se denominan:

Cadenas
Dorsales
Límites
Bordes


13. El sistema de representación en el que se proyecta la superficie de una esfera sobre un plano mediante un conjunto de rectas que pasan por un punto, llamado foco, se llama:

Redes de Bravais
Proyección estereográfica
Proyección cilíndrica
Todas las respuestas anteriores son correctas


14. ¿Cuál de las siguientes afirmaciones es errónea?

Un cristal siempre tiene la forma exacta de la celda unidad
La disposición molecular determina la celda unidad
La estructura cristalina es la forma sólida de ordenación en las tres dimensiones del espacio de los átomos, moléculas, o iones
Un cristal es simétrico porque es periódico, ya que la celda unidad se repite tridimensionalmente


15. Las celdillas elementales de Bravais son:

11
12
14
16


16. ¿Cuál de los siguientes NO es un sistema cristalino?:

Monoclínico
Triclínico
Pentagonal
Hexagonal


17. ¿Cuál de lo siguiente NO es un elemento de simetría?

Plano de simetría
Eje de simetría
Recta de simetría
Centro de simetría


18. ¿Cuál de las siguientes NO es una operación de la proyección estereográfica?

Plano de simetría
Eje de rotoinversión
Centro de simetría
Todas son operaciones de la proyección estereográfica


19. ¿Cuál de estas afirmaciones es correcta?

La red recíproca es la simétrica o especular de la red cristalina
Los módulos de las traslaciones fundamentales se representan con las letras x, y, z
Los planos tautozonales son planos paralelos con una arista común
La ley de zonas de Weiss indica cuando un plano es paralelo a un eje


20. ¿Cuál de estas afirmaciones es correcta?

Las coordenadas para definir un nudo de la red contiguo a otro nudo tomado como origen, son a, b, c
El espaciado reticular es la distancia entre los planos de una familia de planos
Las dos primeras respuestas son correctas
Una de las dos primeras respuestas es correcta y la otra errónea


21. La equivalencia NO incluye:

Identidad
Reflexividad
Transitividad
Matematicamente, la equivalencia incluye todo lo anterior


22. El eje de giro puede ser:

Monario, cuaternario, binario, senario y ternario
Bidimensional y tridimensional
Primario, secundario y terciario
Primario, cuaternario, secundario, y terciario


23. La extinción de los dinosaurios se da en el:

Pérmico
Jurásico
Cretácico
Pleistoceno


24. La mayor extinción que ha existido en la historia de la Tierra se dio en el:

Pérmico
Jurásico
Cretácico
Pleistoceno


25. La especie humana y las glaciaciones se relacionan con el:

Pérmico
Jurásico
Cretácico
Pleistoceno


26. ¿Cuál de lo siguiente NO es cierto respecto de la difracción de rayos X?

Se emplea para la identificación cualitativa de una muestra cristalina
Se usa la ecuación de Bragg
Se usa el método de polvo
Todas las respuestas anteriores son correctas


27. Si en un mineral, una dimensión está más desarrollada que las otras, sin llegar a ser exagerado, estaríamos hablando de hábito:

Isométrico
Prismático o columnar
Acicular
Tabular


28. ¿Cuál de lo siguiente NO es cierto sobre la escala de Mohs?

Tiene 12 niveles
El diamante es el mineral más duro
El talco es el mineral más blando
Todo lo anterior es cierto


29. ¿Qué mineral es el que aparece en la imagen?



Azufre
Halita
Hematites
Galena


30. La moscovita y la biotita son:

Óxidos
Haluros
Micas
Elementos


31. ¿Cuál de lo siguiente sería un mineraloide?

Una imitación sintética de un mineral natural
Un cristal orgánico obtenido en un laboratorio
Una sustancia natural con ciertas características de un mineral, pero líquida
Ninguna de las anteriores sustancias sería un mineraloide


32. El carbón con más bajo contenido en carbono es:

La turba
El lignito
La turba
La antracita


33. ¿Qué NO es cierto del petróleo?

Es un mineraloide
Se ha formado a partir de restos animales y vegetales
Es un compuesto relativamente homogéneo, dado su origen común
Está formado por sustancias orgánicas líquidas


34. ¿Qué NO es cierto del gas natural?

Es un mineraloide
Se ha formado a partir de restos animales y vegetales
Es un compuesto relativamente homogéneo, dado su origen común
Está formado por sustancias orgánicas líquidas


35. La mayor parte de las rocas de la Tierra son rocas:

Metamórficas
Sedimentarias
Ígneas
Mixtas


36. ¿Cuál de las siguientes formaciones geológicas NO es un plutón?

Lacolito
Batolito
Karst
Dique


37. ¿Cuál de las siguientes es una roca volcánica o extrusiva?

Basalto
Granito
Caliza
Pórfido


38. En los bordes divergentes se forman rocas:

Plutónicas
Volcanicas
Metamórficas
Ninguna de las anteriores


39. Cuando las rocas se forman a bastante profundidad, formándose cristales grandes, su textura es:

Porfídica
Pegmatítica
Piroclástica
Vítrea


40. ¿Qué roca es la que aparece en la imagen?



Granito
Caliza
Basalto
Arenisca


41. ¿Cuál de lo siguiente corresponde a una erupción volcánica con lava fluída, rebosante, sin desprendimientos gaseosos explosivos?

Peleana
Hawaiana
Vulcaniana
Estromboliana


42. Para que se forme un volcán en escudo, es preciso que la erupción volcánica sea de tipo:

Peleana
Hawaiana
Vulcaniana
Estromboliana


43. Cuando la lava viscosa de un volcán es extruida fuera de la chimenea creando una masa bulbosa de lava solidificada, ésta se denomina:

Dique
Sill
Domo
Ninguna de las anteriores respuestas es correcta


44. ¿Qué sistema cristalográfico es el que aparece en la siguiente imagen?



Cúbico
Tetragonal
Monoclínico
Triclínico


45. Se conoce como diágenesis:

La creación de continentes
La creación de rocas
La compactación de sedimentos
Ninguno de los anteriores


46. La mayoría de la superficie terrestre está cubierta por rocas:

Metamórficas
Sedimentarias
Ígneas
Mixtas


47. Las rocas sedimentarias formadas por la acumulación de los derrubios y la erosión se conocen como:

Orgánicas
Extrusivas
Químicas
Detríticas


48. ¿Qué mineral es el que aparece en la imagen?



Azufre
Halita
Hematites
Galena


49. La estratificación cruzada se produce por:

Abanicos aluviales
Ríos
Deltas
Todo lo anterior


50. El ambiente sedimentario marino situado en los fondos alejados de la costa donde se acumulan barros orgánicos de composición silícea es el ambiente:

Nerítico
Batial
Artistral
Abisal


51. Un ejemplo de roca terrígena es:

Arenisca
Caliza
Carbón
Halita


52. Un ejemplo de roca carbonática es:

Arenisca
Caliza
Carbón
Halita


53. La rotura de las rocas por la presión de los cristales de hielo se conoce como:

Fracturación glacial
Termoclastia
Gelifracción
Haloclastia


54. El proceso de meteorización química en la que el sílice y las bases son extraídas por la lixiviación de la roca madre, creándose concreciones de hierro y aluminio, se conoce como:

Hidrólisis
Laterizacións
Carbonatación
Ferrización


55. ¿Qué roca es la que aparece en la imagen?



Granito
Caliza
Basalto
Arenisca


56. El metamorfismo que se produce por el efecto simultáneo de un aumento de la presión y de la temperatura durante largos períodos de tiempo en grandes áreas de la corteza terrestre es el metamorfismo:

De contacto
Regional
Dinámico
Hidrotermal


57. ¿Cuál de estas rocas presenta mayor grado de metamorfismo?

Cáliza
Pizarra
Esquisto
Gneis


58. El carbón, como restos vegetales de plantas, menos transformado es:

La turba
El lignito
La turba
La antracita


59. Los conjuntos de rocas que presentan una repartición mineral idéntica para una composición química global idéntica se conocen como:

Cuencas sedimentarias
Paleoambientes
Facies metamórficas
Ninguna de las anteriores respuestas es correcta


60. ¿Cuál de las siguientes NO es una roca metamórfica?

Mármol
Cuarcita
Esquisto
Arenisca




Puntuación =



Leer más

Plan de estudios de Historia Natural - CUVSI


Naturalista

La Historia Natural es el estudio de la Naturaleza, entendiendo como tal el estudio de los seres vivos, por la Biología y Ecología; el estudio de la Tierra, por la Geografía, Geología y Paleontología; el estudio de los seres humanos en la Naturaleza, por la Antropología, y el estudio del cielo, por la Meteorología y la Astronomía. Es un término impreciso que se usó en tiempos pasados como sinónimo de estudio y observación de la Naturaleza. Este concepto global e integrador se fue abandonando, por la especialización de las distintas ciencias que componían su saber, perviviendo en personas entusiastas, sin carácter formal como estudios universitarios, profesionalmente dedicados al estudio, divulgación y creación de libros y documentales, y de forma aficionada, con importantes contribuciones al saber y divulgación naturalista.

El naturalista observa la Naturaleza y como los seres humanos viven en ella, desde un punto de vista visual, descriptivo, investigador y divulgador. Su trabajo fundamental es de campo, pero no menos importante es el de gabinete, estudiando ejemplares, redactando informes, realizando dibujos o montando imágenes. Su trabajo en un sentido amplio y práctico, abarca desde la enseñanza de las Ciencias Naturales a su investigación en campos relacionados relacionados con la misma, pasando por actividades relacionadas con la conservación de los ecosistemas, estudio de espacios naturales, protección de la flora y fauna, y turismo ecológico y etnológico. Su enfoque multidisciplinar es idóneo para la divulgación científica de las Ciencias Naturales. Otros posibles ámbitos de actuación son investigación de fauna y flora, estudios antropológicos de campo, estudios ecológicos y paleontológicos de campo, creación de documentales y materiales multimedia, divulgación astronómica, y creación de materiales didácticos y divulgativos relacionados con estos aspectos.

La formación del naturalista contribuye a divulgar todas las maravillas de la Naturaleza, contribuir a su conservación, a la de los seres vivos y las personas que habitan en el medio natural, a que los humanos aprecien la belleza de nuestro planeta y de todo lo que nos rodea, y de esta forma, garantizar su conservación para las generaciones futuras.


PRIMER CURSO

Primer cuatrimestre

Matemáticas I (Algebra Lineal)
Física I (Mecánica y Ondas)
Química I (Principios de Química y Estructura de la Materia)
Biología I (Principios de Biología)
Geología I (Introducción a la Geología, Mineralogía y Petrología)

Segundo cuatrimestre

Matemáticas II (Cálculo Diferencial e Integral)
Física II (Electromagnetismo y Óptica)
Química II (Reacciones Químicas)
Biología II (Fisiología Vegetal y Animal)
Geología II (Geodinámica Interna y Externa)


SEGUNDO CURSO

Primer cuatrimestre

Geografía Física
Ecología I (Organismos y poblaciones)
Estadística
Sistemas de Información Geográfica
Zoología

Segundo cuatrimestre

Geografía Humana
Ecología II (Comunidades y ecosistemas)
Astronomía General
Paleontología
Botánica


TERCER CURSO

Primer cuatrimestre

Meteorología y Climatología
Geografía Descriptiva I
Edafología
Etología
Optativa I


Segundo cuatrimestre

Medio Ambiente y Sociedad
Geografía Descriptiva II
Topografía y Cartografía
Ilustración científica
Optativa II


CUARTO CURSO

Primer cuatrimestre

Geografía Física de España
Antropología
Biología Marina
Optativa III
Optativa IV

Segundo cuatrimestre

Geografía Humana de España
Biogeografía
Gestión y conservación de flora y fauna
Optativa V
Optativa VI


Asignaturas optativas

Inglés básico
Inglés intermedio
Chino básico
Chino intermedio
Entomología
Microbiología
Biología Evolutiva
Cristalografía y Mineralogía
Geodinámica interna y Geofísica
Petrología y Geoquímica
Geodinámica externa y Geomorfología
Estratigrafía y Sedimentología
Geología Regional
Paleontología Estratigráfica
Administración y Legislación Ambiental
Geografía Rural
Geología Histórica (Historia de la Tierra y de la Vida)
Paleontología de invertebrados
Paleontología de vertebrados
Paleontología Humana
Paleocología y Ecología Evolutiva
Parasitología


Facultad de Ciencias Naturales
Leer más

Fósiles invertebrados: Braquiópodos. Práctica virtual de Paleontología


Onniella

Los braquiópodos son un filo de animales marinos, que fue muy frecuente en el pasado de la Tierra, ya desde tiempos tempranos, aparecen en el Cámbrico superior, dominando el bentos o fondo marino en el Paleozoico, y junto con los trilobites son los protagonistas de la Edad de los invertebrados. Se han descrito cerca de 12.000 especies extintas, sin embargo hoy son poco comunes, contando con 335 especies. En el suelo marino paleozoico sus conchas se acumulaban por miles de millones, tal y como aparecen en la actualidad en las rocas de ese época como fósiles abundantes.

Tienen un gran parecido con los moluscos bivalvos, porque también una concha de carbonato de calcio o una combinación de fosfato de calcio y una sustancia orgánica quitinosa, pero su anatomía es completamente distinta. Las conchas de los bivalvos suelen ser simétricas, mientras que las de los braquiópodos son desiguales. Pertenecen a los lofoforados, un grupo de filos de animales celomados, con celoma o cavidad llena de líquido desarrollada dentro del mesodermo. El lofóforo es una franja de tentáculos con la que toman partículas de comida en la boca. Tras una etapa larval libre, viven enterrados en el fondo o sujetos al sustrato por un pedúnculo. Son solitarios y no forman colonias.

Los braquiópodos están adaptados a un escaso consumo de energía y oxígeno, por lo que se hallan en ambientes marginales, aguas profundas y salobres. Pero en su ecosistema eran dominantes. Las especies se hallaban distribuidas en varios niveles de profundidad, en relación con la presión de la columna de agua, la temperatura, la turbulencia del agua, la salinidad, el sustrato y la disponibilidad de alimentos.

A pesar de ser animales modestos, son uno de los grupos marinos más importantes y abundantes en el Paleozoico. Fueron abundantes y diversos y participaron en la formación de arrecifes antiguos. Por número de fósiles son los numerosos de organismos paleozoicos, por lo que constituyen un aspecto importantísimo en la ciencia paleontológica, debido a su abundancia, diversidad y utilidad en la correlación estratigráfica. En Zoología son mucho menos importantes, pero curiosamente fueron tan abundantes en el pasado, que gran parte del conocimiento de las especies modernas ha venido dado por la investigación de especies del pasado.


Introducción

- Lectura: Wikipedia. Brachiopoda
- Lectura: Ángel Luis Esteban. Guía de fósiles: Braquiópodos


Guión de la práctica

La práctica consiste en la identificación, reconocimiento sus características, y análisis de su valor paleontológico y estratigráfico, de los fósiles propuestos. El equipo y material necesario son los fósiles, lupa (ya sea de mano o lupa binocular), y libreta con utensilios de dibujo.

El trabajo consiste en la observación, reconocimiento y descripción de los fósiles.


Forma de realizar la práctica

1. En laboratorio

El laboratorio que realice prácticas de Paleontología ha de contar con una colección de fósiles (en los los ejemplares raros se pueden sustituir por imitaciones), lupas de mano y binoculares y mesas amplias e iluminadas para la observación y el reconocimiento.

2. En laboratorio casero

La práctica se puede realizar a nivel casero sin peligrosidad. El problema es la obtención o préstamo de los fósiles, por lo que es más factible realizarla en un laboratorio de una institución docente o de forma virtual.

3. De manera virtual

Tenemos varias posibilidades distintas:


1) En el laboratorio de prácticas virtuales de la Universidad de Granada. Accedemos al laboratorio virtual de Paleontología:


Los braquiópodos están en la vitrina III. Hay 18 ejemplares de braquiópodos.


2) En el laboratorio de prácticas virtuales de la Paleontología de la Universidad de Granada, en la sección de 3D:


Tercer estante hacia abajo a la izquierda, subfilo Lophotrocozoa, al hacer clic aparecen dos posibilidades: filo Brachipoda (Braquiópodos) y filo Bryozoa (Briozoos). Elegimos Brachipoda, donde tenemos 13 ejemplares de braquiópodos.


3) En el Museo Virtual de Paleontología de la Universidad de Huelva:


Hay 23 ejemplares que se pueden observar a buena resolución


4) En la web de Braquiópodos.webnode:


En esta página, hay una enorme cantidad de braquiópodos de la colección de braquiópodos Simeón Peiró Alemañ.


5) En la web de Braquiópodos.es:


Completa e interesante web dedicada a los braquiópodos con buena calidad de imágenes. Los más entendidos y expertos pueden echar una mano al autor en la sección de Sin clasificar.


6) En la web de Granada Natural:


Seleccionar Braquiópodos, y la cronoestratigrafía correspondiente.

Es una web de fotógrafos naturalistas, con gran cantidad de información e imágenes. Las fotos son de muy buen calidad y descripción


7) Haciendo clic en las siguientes imágenes de la Wikipedia de braquiópodos fósiles característicos. Para ampliar la imagen, hacer clics en la misma.









Preguntas y actividades

1.- Dibujar los fósiles.

2.- Señalar sus estructuras características, poniendo de relieve sus caracteres identificativos.

3.- Realizar una tabla o diagrama de identificación de los fósiles.

4.- Poner de relieve su importancia estratigráfica y en la determinación de paleoambientes sedimentarios.

5. Entrar en la web del Laboratorio Paleontológico de SUNY Cortland. Clasificación de braquiópodos (en inglés) e intentar clasificar los braquiópodos vistos anteriormente.

6.- Buscar en Internet imágenes e información sobre este tipo de fósiles. En este sentido, pueden ser de interés las siguientes webs:








Para saber más y ampliar conocimientos

- Lectura: Ana G. Moreno. Braquiópodos (pdf)
- Lectura: Palaeos. Brachiopoda (en inglés, almacenado en Archive.org)


Leer más

Microfósiles: Nummulites. Práctica virtual de Paleontología


Nummulites

Los nummulites son un género extinguido de foraminíferos, protistas ameboides, que habitaban el bentos, el fondo marino. Pertenecían a la familia Nummulitidae, en la superfamilia Nummulitoidea, del suborden Rotaliina y del orden Rotaliida. La especie-tipo es Camerina laevigata.

Su existencia y rango cronoestratigráfico va desde el Thanetiense (Paleoceno superior) hasta el Mioceno temprano, aproximadamente hace entre 56 y 20 millones de años.

Son fósiles frecuentes, pudiendo alcanzar hasta 6 cm de diámetro. Su presencia es común en las rocas del Cenozoico del antiguo Mar de Tetis (surgido en el Mesozoico entre los antiguos continentes de Laurasia y Gondwana), particularmente en rocas calizas del Eoceno del actual mar Mediterráneo, como en España o Egipto. Por ello tienen utilidad como fósiles guía para datar las rocas que los contienen.


Introducción

- Lectura: Wikipedia. Nummulites
- Lectura: Geoparque de Sobrarbe. Fósiles y monedas (Congosto de Jánovas)


Guión de la práctica

La práctica consiste en reconocer la estructura y rasgos del fósil propuesto. El equipo y material necesario es el fósil descrito, lupa (ya sea de mano o lupa binocular), y libreta con utensilios de dibujo.

El trabajo consiste en la observación, reconocimiento y descripción del fósil.


Forma de realizar la práctica

1. En laboratorio

El laboratorio que realice prácticas de Paleontología ha de contar con una colección de fósiles (en los los ejemplares raros se pueden sustituir por imitaciones), lupas de mano y binoculares y mesas amplias e iluminadas para la observación y el reconocimiento.

2. En laboratorio casero

La práctica se puede realizar a nivel casero sin peligrosidad. El problema es la obtención o préstamo del fósil, por lo que es más factible realizarla en un laboratorio de una institución docente o de forma virtual.

3. De manera virtual

Tenemos dos posibilidades distintas:

1) En el laboratorio de prácticas virtuales de la Universidad de Granada. Accedemos al laboratorio virtual de Micropaleontología:


Los microfósiles están ordenados alfabéticamente, de esta manera accederemos a las imágenes del género Nummulites.

2) Haciendo clic en las siguientes imágenes de la Wikipedia. Para ampliar la imagen, hacer clics en la misma.




Preguntas y actividades

1.- Dibujar el fósil.

2.- Señalar sus estructuras características, poniendo de relieve sus caracteres identificativos.

3.- Realizar una tabla o diagrama de identificación del mismo.

4.- Poner de relieve su importancia estratigráfica a la hora de datar las capas y rocas en las que se halla.

5.- Buscar en Internet imágenes e información sobre el fósil. Una buena opción, para empezar es buscar en la Enciclopedia de la Vida EOL o en Wikiespecies.

6.- Entrar en World Foraminifera Database (Base de datos mundial sobre foraminíferos) y buscar datos sobre las especies de nummulites.




Paleontología
Leer más